14 research outputs found

    Effect of different cooling strategies on surface quality and power consumption in finishing end milling of stainless steel 316

    Get PDF
    In this paper, an experimental investigation into the machinability of AISI 316 alloy during finishing end milling operation under different cooling conditions and with varying process parameters is presented. Three environmental-friendly cooling strategies were utilized, namely, dry, minimal quantity lubrication (MQL) and MQL with nanoparticles (Al2_{2}O3_{3}),and the variable process parameters were cutting speed and feed rate. Power consumption and surface quality were utilized as the machining responses to characterize the process performance. Surface quality was examined by evaluating the final surface roughness and surface integrity of the machined surface. The results revealed a reduction in power consumption when MQL and MQL + Al2_{2}O3_{3} strategies were applied compared to the dry case by averages of 4.7% and 8.6%, respectively. Besides, a considerable reduction in the surface roughness was noticed with average values of 40% and 44% for MQL and MQL + Al2_{2}O3_{3} strategies, respectively, when compared to the dry condition. At the same time, the reduction in generated surface roughness obtained by using MQL + Al2_{2}O3_{3}condition was marginal (5.9%) compared with using MQL condition. Moreover, the results showed that the improvement obtained in the surface quality when using MQL and MQL + Al2_{2}O3_{3} coolants increased at higher cutting speed and feed rate, and thus, higher productivity can be achieved without deteriorating final surface quality, compared to dry conditions. From scanning electron microscope (SEM) analysis, debris, furrows, plastic deformation irregular friction marks, and bores were found in the surface texture when machining under dry conditions. A slight smoother surface with a nano-polishing effect was found in the case of MQL + Al2_{2}O3_{3} compared to the MQL and dry cooling strategies. This proves the effectiveness of lubricant with nanoparticles in reducing the friction and thermal damages on the machined surface as the friction marks were still observed when machining with MQL comparable with the case of MQL + Al2_{2}O3_{3}

    Principles and Characteristics of Different EDM Processes in Machining Tool and Die Steels

    Get PDF
    Electric discharge machining (EDM) is one of the most efficient manufacturing technologies used in highly accurate processing of all electrically conductive materials irrespective of their mechanical properties. It is a non-contact thermal energy process applied to a wide range of applications, such as in the aerospace, automotive, tools, molds and dies, and surgical implements, especially for the hard-to-cut materials with simple or complex shapes and geometries. Applications to molds, tools, and dies are among the large-scale initial applications of this process. Machining these items is especially difficult as they are made of hard-to-machine materials, they have very complex shapes of high accuracy, and their surface characteristics are sensitive to machining conditions. The review of this kind with an emphasis on tool and die materials is extremely useful to relevant professions, practitioners, and researchers. This review provides an overview of the studies related to EDM with regard to selection of the process, material, and operating parameters, the effect on responses, various process variants, and new techniques adopted to enhance process performance. This paper reviews research studies on the EDM of different grades of tool steel materials. This article (i) pans out the reported literature in a modular manner with a focus on experimental and theoretical studies aimed at improving process performance, including material removal rate, surface quality, and tool wear rate, among others, (ii) examines evaluation models and techniques used to determine process conditions, and (iii) discusses the developments in EDM and outlines the trends for future research. The conclusion section of the article carves out precise highlights and gaps from each section, thus making the article easy to navigate and extremely useful to the related research communit

    Grey-Based Taguchi Multiobjective Optimization and Artificial Intelligence-Based Prediction of Dissimilar Gas Metal Arc Welding Process Performance

    No full text
    The quality of a welded joint is determined by key attributes such as dilution and the weld bead geometry. Achieving optimal values associated with the above-mentioned attributes of welding is a challenging task. Selecting an appropriate method to derive the parameter optimality is the key focus of this paper. This study analyzes several versatile parametric optimization and prediction models as well as uses statistical and machine learning models for further processing. Statistical methods like grey-based Taguchi optimization is used to optimize the input parameters such as welding current, wire feed rate, welding speed, and contact tip to work distance (CTWD). Advanced features of artificial neural network (ANN) and adaptive neuro-fuzzy interface system (ANFIS) models are used to predict the values of dilution and the bead geometry obtained during the welding process. The results corresponding to the initial design of the welding process are used as training and testing data for ANN and ANFIS models. The proposed methodology is validated with various experimental results outside as well as inside the initial design. From the observations, the prediction results produced by machine learning models delivered significantly high relevance with the experimental data over the regression analysis

    Development of an Efficient Prediction Model for Optimal Design of Serial Production Lines

    Get PDF
    One of the problems encountered in the design and implementation of a serial production line (SPL) is the buffer size between the machine tools. The buffer size of the SPL has an important impact on the productivity of the whole production system. The machine tools’ characteristics including their uptimes and downtimes and the process parameters are the main factors that affect the decision regarding the buffer size, and thus the productivity of the SPL. Due to the dynamic nature of this problem, it is complex to find the optimal buffer size in SPL. Thus, in this paper, an Efficient Prediction Model (EPM) is developed using Artificial Neural Network (ANN). The purpose of the developed EPM is to find the buffer size between each succeeding pair of machine tools in SPL at any given uptimes and downtimes of machine tools. An optimization model based on genetic algorithms (GA) is used to generate the learning data for the prediction model to find the optimal or near optimal buffer size of the bay of each machine tool in SPL. The proposed approach integrates the optimization and prediction methodologies to evaluate, and predict the optimal buffer sizes for maximum productivity. Including uptime and downtime parameters enable the proposed method to be used to improve the design of running SPL as well as to design a new SPL. Numerical examples for five and fifteen machine tools were conducted independently in this research and the results show the ability of the proposed method to determine the optimal buffer sizes in a reasonable amount of time. In particular, the results of case studies show that the developed model accurately predict the optimal buffer size, especially for the case of five machines and even for a higher number of machine tools yet with acceptable but less accuracy. Finally, the performance of the proposed approach was compared with some results of the state of the art methods reported in the literature. The comparison shows the superiority of the present approach to identify buffer sizes for higher throughput under the same uptimes and downtime

    Latest Developments and Insights of Orthopedic Implants in Biomaterials Using Additive Manufacturing Technologies

    No full text
    The additive manufacturing (AM) process is used for joining materials to make objects from 3D model data, usually layer upon layer, contrary to subtractive manufacturing methods. This technology plays a significant role in fabricating orthopedic implants, especially parts of hip implants (HI), such as femoral head, stem, neck, polyethylene linear, acetabular shell, and so on, using biomaterials. These biodegradable resources are those that can be utilized as tissue substitutes since they are accepted by live tissues. Here, the study is to examine the most preferable AM process and biomaterial used for making HI, including its manufacturing methods, compositions, types, advantages, and defects and cross-examining the limitations to bring some new technology in the future. Then we elaborate on the outlook of the most preferable material, followed by evaluating its biocompatibility, detailed application, and structural defects occurring while using it as an HI. Subsequently, the physical characteristics and design constraints are also reviewed in the paper. We assess the current stage of the topology optimization technique (TO) with respect to the characteristics of newly designed implants. The review concludes with future perspectives and directions for research

    On multistage approach for flexible routing in flexible manufacturing systems

    No full text
    Optimizing flexible routing in flexible manufacturing systems is one of the aspects that increase the efficiency of flexible manufacturing systems especially in dynamic environment systems. This article presents a multistage approach to solve flexible routing problem in flexible manufacturing systems. Multistage approach includes three stages; the first stage is a production simulation system to find the fitness of the flexible manufacturing systems corresponding to different products’ routes’ groups. The second stage proposes an artificial neural network approach to predict the products’ routes’ group in flexible manufacturing systems. The last stage combines genetic algorithms and artificial neural network to optimize proper routes for all product types in flexible manufacturing systems. Multistage approach proposed in this study aims to reduce the computational time required to obtain and optimize the flexible routes in flexible manufacturing systems. The results of this study show that the artificial neural network can be used efficiently to predict the flexible routes in flexible manufacturing systems and it reduces the computational time for routes’ optimization required with production simulation system. This characteristic improves the flexibility of flexible manufacturing systems since it can be adapted frequently against any change in production ratios
    corecore